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Abstract. Starting from a small perturbation in the initial data for a Robertson-Walker 
universe, it is shown that, in a small region of space-time, it is possible for large fluctuations 
to develop in both the metric and physical variables describing the universe. The initial data 
are specified on a characteristic hypersurface in a region of perfect fluid filled space-time 
and the method of analysis of the field equations is based on the techniques introduced by 
Bondi, van der Burg and Metzner. 

1. Introduction 

One of the problems facing cosmologists is to explain how galaxies condensed in a 
universe which, on the large scale, is homogeneous and isotropic. There appear to be 
two possibilities: either matter after the initial big bang was in a highly chaotic state, 
which has since become homogeneous and isotropic with just enough random fluctua- 
tion at the appropriate time to form galaxies (see, for example, Misner et a1 (1973)), or 
else the situation immediately after matter had formed was homogeneous and isotropic, 
and galaxies have arisen as a result of small perturbations from this state. In this paper 
the latter possibility will be considered in more detail. 

It has been thought that if suitable initial data were built into the description of the 
universe after the big bang, then perturbations would develop and carry on developing. 
However, it has been difficult to demonstrate how this happens to a universe based on a 
standard Robertson-Walker cosmological model by solving an initial-value problem 
with data specified on a space-like hypersurface (Hawking 1966, Weinberg 1972). I 
have attempted here to show how these perturbations may begin to develop, by 
considering an initial-value problem for a small region of space-time with data specified 
on a null hypersurface. The more difficult question of relating the formal solution of the 
initial-value problems to galaxy formation is not considered here. The approach to 
solving characteristic initial-value problems in general relativity used here was insti- 
gated by Bondi et al (1962) and adapted towards the problem under discussion in two 
previous papers, Chellone and Williams (1973) and Chellone (1976), referred to as (I) 
and (11). 

In (11) a formal solution to the characteristic initial-value problem for a perfect fluid 
filled Robertson-Walker universe was generated for a region near to an origin world 
line within the fluid. This restriction is necessary, as the method of solution of the 
problem requires all metric and physical variables to be expanded in positive powers of 
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a radial parameter. The initial data can then be shown to be composed of coefficients in 
certain of the power series expansions together with an equation of state which gives the 
density as a function of the presssure. 

In the present paper small perturbations in the characteristic initial data for a 
Robertson-Walker model are built into the analysis. The result of doing this is that, in a 
neighbourhood of an origin world line, it is possible to obtain significant variations in 
the non-data variables, and that the perturbations in both data and non-data variables 
either maintain themselves or increase with increasing time. 

2. The Robertson-Walker universe 

The metric describing a homogeneous, isotropic space-time is (Weinberg 1972) 

ds2 = d t ‘ 2 - R ( t ’ ) 2 ( ~ + d 8 ’ 2 + s i n 2  dr” 8’ d4”)  
kr” 

where the coordinates are (t’ ,  r’, 8‘,  4‘) ,  R(t’)  is the ‘scale factor’ for the universe and k, 
the curvature, is -1,0 or +l. The Bondi form of metric describing a general axially and 
azimuth reflection symmetric space-time is (Bondi et a1 1962) 

ds = ( V  e”/r - U2r2 e’’) du2  + 2 e’’ du dr 

+ 2 Ur2 e’” du d8  - r2(e2’ de2  + e-” sin2 8 d4’), 

where U, V, p and y are functions of the coordinates U, r and 8. The full coordinate 
system used is (U, r, 8, 4), which are numbered according to the scheme (0,1,2,3) .  
Incoming radiation will be excluded from the analysis. 

Transforming the Robertson-Walker metric into the Bondi form results in (11) 

goo = 1 - (rR-’ dR/da)’R/(l- kr2R-’) = V eZP/r, 

gol = df/dr - (rR-’dR/da)[R-’- rR-’(dR/da)(df/dr)]R/(l- krF2RP2) = e’’, 

g22=-r , g33 = -r sin 8, 

where 

2 2 2  

t’ = U + f ( r )  = a(u,  r), r’ = r/R(a),  

@’=e,  4 ’ = 4 ,  
and U and y are zero owing to the spherical symmetry of the Robertson-Walker 
metric. 

With the assumption that space-time is filled with a perfect fluid which has 
energy-momentum tensor 

T F Y  = (P + P ) W V  -pg,u 

where p is the pressure, p the density and U, the velocity vector for the fluid, the field 
equations and the conservation condition T,“ = 0 lead to a solution of the charac- 
teristic initial-value problem in the case where all variables are expanded in positive 
powers of r. (For details see (I) and (II).) 

The non-zero initial data for the Robertson-Walker metric can be chosen to be p ,  o l  
and an equation of state of the form p = p ( p )  together with an arbitrary function of 
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r-integration, 8. The data variables y and v z  are zero. So, specifying the leading 
coefficients of the non-zero data variables on a particular null hypersurface U = constant 
together with B ( u )  enables the leading terms of all the other physical and metric 
variables to be obtained on U = constant. The values of these variables on future null 
hypersurfaces can be found once the time development equations for the data variables 
have been considered. 

3. Perturbations from the Robertson-Walker metric 

To generalise the metric away from exact spherical symmetry, a small perturbation is 
introduced into the data variables of the symmetric initial-value problem. This is done 
by introducing a small, but non-zero, parameter E .  Data variables independent of E are 
those non-zero variables from the exact Robertson-Walker solution which, when 
expanded in positive powers of r, have the form 

p = 4 + rD + 0 (r’), U T  = 1 +O(r’). 

The first coefficient of the p expansion is determined by the equation of state. 

space-time represent the small perturbation, then referring to (I) 
If all the other coefficients in the data variables for a general Bondi perfect fluid 

y = r’f sin’ 8 + r3(g sin’ 8 + h sin’ 8 cos 8 )  + O(r4), 

p = f i + r ( D + E  cos 8)+O(r’), 

v1 = (1 + B2)1’2 - B cos 8 + r ( a  + b cos 8 + d cos’ 8 )  + O(r2), 

v2 = rB sin 8 + r2(k sin 8 + 1 sin 8 cos 8 )  + O(r3), 

where f, g, h, E, B, a,  b, k, 1 and d are of order E .  The forms of v l  and v2 arise from 
continuity conditions on r = 0 (see (I) for details). vo can be obtained from the normality 
condition vFv, = 1. Not all of the coefficients are independent, and if the expansion for 
p is 

p = f i + r ( F + G c o s 8 ) + O ( r 2 ) ,  

the following relationships hold: 

6 = 6(4) 
1 = -d, 

(equation of state), 

F = Dp’, 

E =  - F B ( l + B 2 ) - ” ’ / p ’ + ( ~ + ~ ) [ 2 B ( a  +d)+b(l+2B2)(1+B2)-”’] ,  

p f  = dp/dp evaluated at r = 0, 

G = -B-’(l+ B’)l/’F + (4 + 6 ) [ ( 3 a  + d)B-’ + 4 B ( a  + d )  + 4b(1  + B 2 ) 1 / 2 ] ,  

k =-B(l+B’)’/’(a +d) -b -bB’ .  

These relationships are consistent with the E dependence given above, while the 
order of magnitude behaviour of the coefficients in p is 

F = 0(1), G = Q ( ~ / E ) .  

It is this last result that enables large perturbations to occur. 
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When the first few terms of the non-data metric variables p, U and V have been 
computed, the results are: 

2 3 

p =p”(1)+r2p(E)+r3p(i/E)+ . a ’ ,  

1 2 3 
u=rU(&)+r2U(l /E)+ . . . ,  v = ~ + ~ ~ v ( ~ ) + .  . . , 

where the order of magnitude behaviour in terms of E is explicitly shown for each 
coefficient in the r-expansion. p” is the arbitrary function of r-integration previously 
introduced. 

Hence, on an initial null hypersurface, the result of introducing a small perturbation 
away from a Robertson-Walker metric is to produce on the hypersurface perturbations 
of the same order in the first few terms of p ,  zll and u2, but to produce large perturbations 
in some coefficients of p, U and V. These perturbations, although formally of order 
1 / ~ ,  are not arbitrarily large as, in all cases, the terms concerned are multiplied by, at 
least, a factor of r ;  which, as the expansion is valid only in a neighbourhood of r = 0, will 
be sufficient to prevent infinitely large perturbations. 

The next question is whether or not these large perturbations maintain themselves 
with increasing time. To answer this, the time development of the data variables must 
be considered. An analysis of these equations (equations (4.10)-(4.13) of (I)) leads to 

Y,OX(U = Y(l/E), 

~ , o A ( 1 ) +  ~ i , o B ( l / ~ ) +  uz,oC(1) = D ( ~ / E ) ,  

~ , o E ( 1 ) +  ~ i , o F ( l / ~ )  = G ( ~ / E ) ,  

P,OH(&)+ U l , O I ( l )  + 0 Z , O J ( 1 / & )  =K( l /E) ,  

where the capital letters denote functions known on the original hypersurface of the 
indicated order of E and a comma denotes a partial derivative. 

An order of magnitude calculation for the time derivatives leads, in general, to the 
following behaviour: 

which shows that the perturbations of all the data variables will increase as time 
advances. 

The formal solution to the characteristic initial-value problem can now be given in 
terms of these data variables, the arbitrary function B ( u )  and the equation of state 
P = P ( P ) .  

4. Conclusion 

An analysis of a perturbed Robertson-Walker metric by means of a characteristic 
initial-value problem shows that, in a neighbourhood of an origin world line, small 
perturbations away from exact spherical symmetry are capable of producing and 
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sustaining large variations in some of the metric and physical variables. The implication 
of this is that it is possible, at least in a small region, for large inhomogeneities to develop 
in an initially smoothed out and spherically symmetric universe. 
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